Fluoride substitution in LiBH4 is studied by investigation of LiBH4-LiBF4 mixtures (9:1 and 3:1). Decomposition was followed by in-situ synchrotron radiation X-ray diffraction (in-situ SR-PXD), thermogravimetric analysis and differential scanning calorimetry with gas analysis (TGA/DSC-MS) and in-situ infrared spectroscopy (in-situ FTIR). Upon heating, fluoride substituted LiBH4 forms (LiBH4-xFx) and decomposition occurs, releasing diborane and solid decomposition products. The decomposition temperature is reduced more than fourfold relative to the individual constituents, with decomposition commencing at T / °C = 80 °C. The degree of fluoride substitution is quantified by sequential Rietveld refinement and shows a selective manner of substitution. In-situ FTIR experiments reveal formation of bands originating from LiBH4-xFx. Formation of LiF and observation of diborane release implies that the decomposing materials have a composition that facilitates formation of diborane and LiF, i.e. LiBH4-xFx (LiBH3F). An alternative approach for fluoride substitution was performed, by addition of Et3N∙3HF to LiBH4, yielding extremely unstable products. Spontaneous decomposition indicates fluoride substitution to have occurred. From our point of view, this is the most significant destabilization effect seen for borohydride materials so far.
  
Hydrogen production from waste feedstocks using supercritical water gasification (SCWG) is a promising approach towards cleaner fuel production and a solution for hard to treat wastes. In this study, the catalytic co-gasification of starch and catechol as models of carbohydrates and phenol compounds was investigated in a batch reactor at 28 MPa, 400–500 °C, from 10 to 30 min. The effects of reaction conditions, and the addition of calcium oxide (CaO) as a carbon dioxide (CO2) sorbent and TiO2 as catalyst on the gas yields and product distribution were investigated. Employing TiO2 as a catalyst alone had no significant effect on the H2 yield but when combined with CaO increased the hydrogen yield by 35% and promoted higher total organic carbon (TOC) reduction efficiencies. The process liquid effluent was characterized using GC–MS, with the results showing that the major non-polar components were phenol, substituted phenols, and cresols. An overall reaction scheme is provided.
  • Structure and Characterization of KSc(BH4)4
    R. Cerny, D.B. Ravnsbæk, G. Severa, Y. Filinchuk, V. D'Anna, H. Hagemann, D. Haase, J. Skibsted, C.M. Jensen and T.R. Jensen
    Journal of Physical Chemistry C, 114 (45) (2010), p19540-19549
    DOI:10.1021/jp106280v | unige:14680 | Abstract | Article HTML | Article PDF
A new potassium scandium borohydride, KSc(BH4)4, is presented and characterized by a combination of in situ synchrotron radiation powder X-ray diffraction, thermal analysis, and vibrational and NMR spectroscopy. The title compound, KSc(BH4)4, forms at ambient conditions in ball milled mixtures of potassium borohydride and ScCl3 together with a new ternary chloride K3ScCl6, which is also structurally characterized. This indicates that the formation of KSc(BH4)4 differs from a simple metathesis reaction, and the highest scandium borohydride yield (~31 mol %) can be obtained with a reactant ratio KBH4:ScCl3 of 2:1. KSc(BH4)4 crystallizes in the orthorhombic crystal system, a = 11.856(5), b = 7.800(3), c = 10.126(6) Å, V = 936.4(8) Å3 at RT, with the space group symmetry Pnma. KSc(BH4)4 has a BaSO4 type structure where the BH4 tetrahedra take the oxygen positions. Regarding the packing of cations, K+, and complex anions, [Sc(BH4)4]−, the structure of KSc(BH4)4 can be seen as a distorted variant of orthorhombic neptunium, Np, metal. Thermal expansion of KSc(BH4)4 in the temperature range RT to 405 K is anisotropic, and the lattice parameter b shows strong nonlinearity upon approaching the melting temperature. The vibrational and NMR spectra are consistent with the structural model, and previous investigations of the related compounds ASc(BH4)4 with A = Li, Na. KSc(BH4)4 is stable from RT up to ~405 K, where the compound melts and then releases hydrogen in two rapid steps approximately at 460−500 K and 510−590 K. The hydrogen release involves the formation of KBH4, which reacts with K3ScCl6 and forms a solid solution, K(BH4)1−xClx. The ternary potassium scandium chloride K3ScCl6 observed in all samples has a monoclinic structure at room temperature, P21/a, a = 12.729(3), b = 7.367(2), c = 12.825(3) Å, β = 109.22(2)°, V = 1135.6(4) Å3, which is isostructural to K3MoCl6. The monoclinic polymorph transforms to cubic at 635 K, a = 10.694 Å (based on diffraction data measured at 769 K), which is isostructural to the high temperature phase of K3YCl6.
  • Pressure and Temperature Influence on the Desorption Pathway of the LiBH4−MgH2 Composite System
    U. Bösenberg, D.B. Ravnsbæk, H. Hagemann, V. D'Anna, C. Bonatto Minella, C. Pistidda, W. Van Beek, T.R. Jensen, R. Bormann and M. Dornheim
    Journal of Physical Chemistry C, 114 (35) (2010), p15212-15217
    DOI:10.1021/jp104814u | unige:14742 | Abstract | Article HTML | Article PDF
 
The decomposition pathway in LiBH4−MgH2 reactive hydride composites was investigated systematically as a function of pressure and temperature. Individual decomposition of MgH2 and LiBH4 is observed at higher temperatures and low pressures (T ≥ 450 °C and p(H2) ≤ 3 bar), whereas simultaneous desorption of H2 from LiBH4 and formation of MgB2 was observed at 400 °C and a hydrogen backpressure of p(H2) = 5 bar. The simultaneous desorption of H2 from LiBH4 and MgH2 without intermediate formation of metallic Mg could not be observed. In situ X-ray diffraction (XRD) and infrared (IR) spectroscopy reveal the present crystalline and amorphous phases.
A new alkaline transition-metal borohydride, NaSc(BH4)4, is presented. The compound has been studied using a combination of in situ synchrotron radiation powder X-ray diffraction, thermal analysis, and vibrational and NMR spectroscopy. NaSc(BH4)4 forms at ambient conditions in ball-milled mixtures of sodium borohydride and ScCl3. A new ternary chloride Na3ScCl6 (P21/n, a = 6.7375(3) Å, b = 7.1567(3) Å, c = 9.9316(5) Å, β = 90.491(3)°, V = 478.87(4) Å3), isostructural to Na3TiCl6, was identified as an additional phase in all samples. This indicates that the formation of NaSc(BH4)4 differs from a simple metathesis reaction, and the highest scandium borohydride yield (22 wt %) was obtained with a reactant ratio of ScCl3/NaBH4 of 1:2. NaSc(BH4)4 crystallizes in the orthorhombic crystal system with the space group symmetry Cmcm (a = 8.170(2) Å, b = 11.875(3) Å, c = 9.018(2) Å, V = 874.9(3) Å3). The structure of NaSc(BH4)4 consists of isolated homoleptic scandium tetraborohydride anions, [Sc(BH4)4]–, located inside slightly distorted trigonal Na6 prisms (each second prism is empty, triangular angles of 55.5 and 69.1°). The experimental results show that each Sc3+ is tetrahedrally surrounded by four BH4 tetrahedra with a 12-fold coordination of H to Sc, while Na+ is surrounded by six BH4 tetrahedra in a quite regular octahedral coordination with a (6 + 12)-fold coordination of H to Na. The packing of Na+ cations and [Sc(BH4)4]– anions in NaSc(BH4)4 is a deformation variant of the hexagonal NiAs structure type. NaSc(BH4)4 is stable from RT up to ∼410 K, where the compound melts and then releases hydrogen in two rapidly occurring steps between 440 and 490 K and 495 and 540 K. Thermal expansion of NaSc(BH4)4 between RT and 408 K is anisotropic, and lattice parameter b shows strong anomaly close to the melting temperature.

Google

 


Redisplay in format 

                 

    in encoding 

  
Format for journal references
Format for book references
Last update Friday March 02 2018